
109

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Computing Triangulations with Minimum Stabbing Number

Victor Alvarez ∗ Sándor P. Fekete ∗ Arne Schmidt ∗

Abstract

For a given point set P or a polygon P , we consider the
problem of finding a triangulation T with minimum
stabbing number, i.e., a triangulation such that the
maximal number of segments hit by any ray going
through T is minimized. We prove that this problem is
NP-hard; this differs from the problem of triangulating
a polygon with minimum edge weight, which is solvable
in polynomial time with a simple dynamic program [7].
In an experimental part we test various heuristics.

1 Introduction

Triangulations of point sets or polygons are natural
auxiliary structures for a wide range of applications.
Depending on the context, a variety of objective func-
tions have been considered to measure their quality.
Arising from the context of ray shooting, one such
measure that has received a growing amount of at-
tention is the stabbing number: This is the maximum
number of triangulation edges any line (called a stab)
can intersect; finding a triangulation of minimum stab-
bing number corresponds to finding a triangulation
that is as “transparent” or “shallow” as possible. This
type of question has been considered for a number
of structures on a given point set, such as matchings,
trees, or triangulations; see Fekete et al. [6].

In this paper we consider two variations of stabbing
problems: (1) triangulating a point set P or (2) a poly-
gon P such that the stabbing number is minimized.
More formally, the Minimum Stabbing Triangula-

tion Problem (MSTR) asks for a triangulation T
of a given point set P , such that the stabbing number
maxS∈S (|{e ∈ T : e ∩ S ̸= ∅}|) is minimal, where S is
the set of all stabs. The problem of triangulating a
polygon (MSPT) is defined analogously.

Related Work. Chazelle et al. [3] consider geodesic
triangles, i.e., triangles with concave sides. They show
that for every polygon P with n vertices, O(log n) tri-
angles can be hit. Fekete et al. [6] prove NP-hardness
of stabbing problems for matchings and trees, and
triangulations in [9]. Aichholzer et al. [2] prove NP-
hardness of the stabbing problem for polygons. De
Berg and van Kreveld [4] study decompositions of rec-
tilinear polygons into rectangles and show that there

∗Department of Computer Science, TU Braunschweig, Ger-
many. {s.fekete,arne.schmidt}@tu-bs.de, alvarez@ibr.cs.tu-bs.de

exists such a decomposition with stabbing number
O(log n), where the stabbing number counts the num-
ber of rectangles any line can intersect. More recently,
Piva and de Souza [8] provide a new IP formulation
and solve instances with 5000 points [8]. Welzl [11]
shows how to construct a spanning tree having a cross-
ing number of O(

√
n), which is closely related to the

stabbing number.

Our Contribution. We prove that the MSPT is NP-
hard for axis-parallel stabs; we also present a number
of heuristics and experimental results for the MSTR.

2 Triangulating Polygons

Theorem 1 The problem MSPT with axis-parallel
stabs is NP-hard.

A B
C

p

D E

Bus System

(a) Checker gad-
get.

A

B

CE F

Bus System

D

(b) Literal gad-
get.

A

B

C

Bus System

D

E F

B’

C’

A’

D’

E’ F’

(c) Variable gadget for variable x with
x left and x right

Figure 1: Components of the polygon with bus system
underneath. Circles represent grid points, filled circles
are vertices of the polygon.

Proof. We give a reduction of 3SAT to our prob-
lem. Consider a 3SAT instance I consisting of CI

clauses, LI literals and VI variables. We transform
this instance into a polygon that consists of four
components (see Figure 1 for an overview): a literal
gadget for representing a literal l; a variable gadget
for representing a variable v; a checker gadget for
guaranteeing a valid assignment of variables and
literals; a bus system for connecting all gadgets.

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

110

33rd European Workshop on Computational Geometry, 2017

Variable
+

Variable
Checkers

Literals
+

Clauses

Literal Checker

Clause
Checker

O(VI)

O(CI)

O(CI)

O(LI)

O(LI)

Figure 2: Left: Block model of the 3SAT polygon.
Right: Part of a reduction polygon.

The Gadgets. The gadgets are shown in Figure 1.
By choosing the diagonals AC or BD we can choose
the corresponding literal to be false or true, respec-
tively. Considering a variable gadget the setting will
be the other way round: Choosing AC and B′D′ sets
the variable to true and choosing A′C ′ and BD sets
the variable to false. The checker gadgets force a
correct setting of all diagonals, e.g., a variable x can-
not be true and false at the same time. By scaling
the grid we are allowed to insert more points in the
checker gadget and thus, increase the maximum stab-
bing number.

The Construction. We omit full details due to space
constraints. Consider the block model in Figure 2.
We place the gadgets corresponding to the blocks;
the clauses are represented by literals in the middle,
variables are placed on top, literal checkers below and
clause checkers to the left. Figure 2 shows part of an
example.

Stabbing Number. For all stabs the stabbing num-
ber is at most 4CI (proof omitted due to space lim-
itations). Thus, if the 3SAT instance is satisfiable
then the stabbing number of the triangulation of the
polygon is at most 4CI .
We can also show the other direction: if there is

a triangulation with stabbing number ≤ 4CI , then
the 3SAT instance is satisfiable. Finally, it is straight-
forward to check that the overall construction has
polynomial size. !

3 Integer Programm Formulation

When trying to solve the problem with an IP, it is nat-
ural to focus on the maximal number of non-crossing
edges, but using triangles is the better choice [10].
This IP may have Ω(n3) variables, however, we only
need to consider empty triangles that do not enclose
any point. The basic idea of the IP is that each edge
e in a triangulation is part of two triangles if e is not
part of the convex hull. If e is a part of the convex
hull then there is exactly one triangle having e as an
edge.

Definition 1 We define the edges of the convex hull
EH := {e ∈ E|e is on the convex hull}. ∆(P) is
the set of all empty triangles induced by point set
P . δ−(ij) := {ijl ∈ ∆(P)|ijl is a right turn} and
δ+(ij) := {ijl ∈ ∆(P)|ijl is a left turn}. Moreover,
for a triangle ijl and a stab S, let cSijl := βS

ij+βS
jl+βS

il ,

where βS
ij :=

⎧

⎪

⎨

⎪

⎩

1, if ij ∈ EH and ij intersects S

0.5, if ij /∈ EH and ij intersects S

0, else

With this, we can formulate a triangle based IP for
MSTR (analogously for MSPT) as follows:

min K
s.t.:

∀ij ∈ E \ EH :
∑

ijl∈∆(P)
ijl∈δ

+(ij)

xijl =
∑

ijl∈∆(P)
ijl∈δ

−(ij)

xij

∀ij ∈ EH :
∑

ijl∈∆(P)

xijl = 1

∀S ∈ S:
∑

ijl∈∆(P):

ijl∩S ̸=∅

cSijlxijl ≤ K

∀t ∈ ∆(P): xt ∈ B

4 Heuristics

In addition to exact methods, we also tested a number
of heuristics: the new BER-algorithm (Section 4.1),
local optimization based on flipping (Section 4.2), and
an algorithm for obtaining a smaller edge set (Sec-
tion 4.3).

4.1 Bridge Error Rate (BER)

The idea of the Bridge Error Rate (BER) algorithm
is as follows. For each stab S there is a lower bound
on the number of edges crossing S (Theorem 3). If we
insert an edge e then we may raise this lower bound.
Because we do not want to increase the lower bound,
we greedily add edges that raise it as little as possible.

Definition 2 (Bridge) Consider a stab S, as shown
in Figure 3. S splits the point set P into subsets PM ,
PU and PL, i.e., points on S and in the upper and
lower half-space, respectively. For a connected subset
CH

∗(PU) ⊆ CH(PU), where CH(V) is the convex hull of
a set V , a point p is in CH

∗(PU) iff there is a point
q ∈ P \ PU such that {p, q} does not cross CH(PU).
Analogously, we define CH

∗(PL). The bridge B(S) is
the union of CH∗(PU), CH∗(PL) and PM . Furthermore,
we define |B(S)| as the number of points in B(S).
Note that CH∗ may not be an upper or lower envelope
of the convex hull.

Theorem 3 Consider a stab S and its bridge B(S).
Let m be the number of points on S, and m∗ the

111

EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Figure 3: A stab (solid fat line). The solid thin line is
CH

∗(PL) and CH
∗(PR), respectively. The dashed lines

are the extensions to the convex hull on each side.

u

v

Figure 4: A constrained bridge. The end points of
{u, v} are connected to B(S) via geodesic paths.

number of points on S that are not part of CH(P).
Then there are at least |B(S)| + m + m∗ − 1 edges
intersecting S.

If an arbitrary edge e is added that intersects a stab
S and some edges in B(S), we remove these edges
from B(S) and add geodesic paths connecting the end
points of e and B(S) (see Figure 4). This results in a
new constrained bridge, yielding a new lower bound.
Note that Theorem 3 also holds for the constrained
bridge. Having constrained bridges, we can insert
one edge after another until we have a triangulation.
Further details are omitted due to limited space.

4.2 Flipping

Flipping an edge in a triangulation is a natural heuris-
tic approach to local optimization. We flip edges only
when the flip does not increase the stabbing number of
any stab, and there is a stab with maximum stabbing
number whose number decreases after the flip. If no
such edge exists, we flip edges as long as the stabbing
number of a stab is not increased and the total edge
length decreases. As described in Section 5, with these
criteria we achieve near-optimal solutions.

4.3 Smaller Edge Sets

When solving the IP for our problems, the runtime to
solve an instance depends on the number of variables,
i.e., the number of edges. An idea for using a reduced
edge set comes from the IP for triangulations. We
begin with the convex hull and add edges from the
smallest triangle in terms of edge length. From these
new edges we repeat the procedure in the left and
right half-space from each supporting line. A reduced
edge set can be seen in Figure 5.

5 Experiments

Our experiments were run on 64-bit Ubuntu 14.04.4
LTS with an Intel Core i7-4770 @3.4GHz with 32KB

Figure 5: Example for an edge set with 12 points.
From 66 possible edges we now only use 33.

Figure 6: Left: Satellite image of earth by night [1].
Right: Generated image with 10000 points.

solved # points
30 170
15 190
<15 >190 0

1
2
3
4
5
6
7
8
9

0

200

400

600

800

1000

1200

0 60 120 180 240 300 360 420 480 540

Ob
jec

tiv
e V

alu
e

Tim
e [

s]

Point Set Size

Figure 7: Left: Number of solved instances (out of
30) for different point sizes. Right: Average time
and objective value of solvable instances. The dashed
line represents the objective value, the solid line the
average time in seconds.

L1 cache, 256KB L2 cache, 8192KB L3 cache and
32GB RAM. We used the g++ compiler version 4.8.4
and optimization flag -O3.

Clustered Instances. Clustered instances were gen-
erated from a lightmap, similar to the description in
Fekete et al. [5]. For a given illumination map, the
brightness value induce a density function that can
be used for random sampling of points from the im-
age. For the image shown in Figure 6, we created
30 instances per point set size for obtaining clustered
instances. We omit other instance types.

Optimal Solutions. The left of Figure 7 shows how
many instances (out of 30) with n points are solvable
within the 30-minute time limit. The graph on the
right side shows average runtime and average objective
value for each number of points.

Triangulation Heuristics. Figure 8 shows a compar-
ison of the optimum and the BER-algorithm with
flipping. The solutions are quite close to the optimum;
the maximum difference is 3. We also tested other
methods (e.g., Delaunay triangulations) which resulted
in slightly worse solutions.

Reduced Edge Sets. Consider Figure 9. We observe
that the reduced edge set appears to grow (close to)

112

33rd European Workshop on Computational Geometry, 2017

0

1

2

3

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

Ob
jec

tiv
e v

alu
e d

iff
er

en
ce

Number of points

Figure 8: Difference between the optimal objective
value and the result of the BER algorithm with flipping.
Shaded area shows the range. The solid line shows
average difference.

4

5

6

7

8

9

0 100 200 300 400 500 600 700

Se
gm

en
ts

pe
r p

oi
nt

Number of points

Figure 9: Number of edges per point in the reduced
edge set on clustered instances.

0

5

10

15

20

25

30

0 100 200 300 400 500 600 700
0
10
20
30
40
50
60
70
80
90

Ti
m

e [
s]

Number of points

Ob
jec

tiv
e v

alu
e

0

0.1

0.2

0.3

0.4

0.5

0

1

2

3

4

5

6

20 70 120 170

Ti
m

e f
ac

to
r

Av
er

ag
e o

bj
ec

tiv
e d

iff
er

en
ce

Number of points

Figure 10: Top: Average time (solid line) and stab-
bing number (dashed line) using a reduced edge set.
Bottom: Difference of stabbing number of an optimal
solution and with reduced edge set (solid line) and the
time ratio reduced edge set / optimum.

linearly in the number of points. Figure 10 shows a
comparison between optimum and the solutions with
reduced edge set. The speedup is outstanding; for
example, the computing time is reduced by a factor
of 500 for 180 points. Note that this comes at the
expense getting a suboptimal solution.

6 Future Work

We have shown that the problem MSPT of finding
a triangulation of a polygon with minimum stabbing

number is NP-hard. Our experiments for the MSTR

show that flipping edges can yield excellent solutions.
This is also the case for our BER-algorithm; however,
its runtime is rather high. We can also use a reduced
edge set, resulting in a massive speedup with an only
slightly increased stabbing number.

An interesting challenge on the theoretical side lies
in developing approximation algorithms, if there are
any; this is already an open problem for the other
problems of stabbing type considered in [6]. On the
experimental side, it is also of interest to collect hard
instances, i.e., instances that are practically difficult
to solve to optimality.

References

[1] Blick.ch: Lichter der Erde. http://www.blick.ch/
life/wissen/nasa-bilder-aus-dem-all-lichter-
der-erde-id2131506.html. Accessed: 2016-06-21.

[2] O. Aichholzer, F. Aurenhammer, T. Hackl, F. Hur-
tado, A. Pilz, P. Ramos, J. Urrutia, P. Valtr, and
B. Vogtenhuber. On k-convex point sets. Computa-
tional Geometry, 47(8):809–832, 2014.

[3] B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas,
J. Hershberger, M. Sharir, and J. Snoeyink. Ray
shooting in polygons using geodesic triangulations.
Algorithmica, 12(1):54–68, 1994.

[4] J. A. de Loera, S. Hosten, F. Santos, and B. Sturm-
fels. The polytope of all triangulations of a point
configuration. Documenta Mathematica, 1(4):103–119,
1996.

[5] S. P. Fekete, A. Haas, M. Hemmer, M. Hoffmann,
I. Kostitsyna, D. Krupke, F. Maurer, J. S. B. Mitchell,
A. Schmidt, C. Schmidt, and J. Troegel. Computing
nonsimple polygons of minimum perimeter. In 15th
International Symposium on Experimental Algorithms
(SEA 2016), pages 134–149, 2016.

[6] S. P. Fekete, M. E. Lübbecke, and H. Meijer. Mini-
mizing the stabbing number of matchings, trees, and
triangulations. Discrete & Computational Geometry,
40(4):595–621, 2008.

[7] G. Klincsek. Minimal triangulations of polygonal
domains. Ann. Discrete Math, 9:121–123, 1980.

[8] B. Piva and C. C. de Souza. Minimum stabbing rect-
angular partitions of rectilinear polygons. Computers
& Operations Research, 80:184–197, 2017.

[9] B. Piva, S. P. Fekete, and C. de Souza. On triangula-
tions with minimum stabbing or minimum crossing
number. Manuscript, 2016.

[10] A. Tajima. Optimality and integer programming for-
mulations of triangulations in general dimension. In
International Symposium on Algorithms and Compu-
tation, pages 378–387. Springer, 1998.

[11] E. Welzl. On spanning trees with low crossing numbers.
In Data structures and efficient algorithms, pages 233–
249. Springer, 1992.

